CHINESE OPTICS LETTERS

NH₃ laser THz emission under optical pumping by "long" (~100 μs) CO₂ laser pulses

Andrey Alekseevich Ionin, Igor Olegovich Kinyaevskiy, Yuri Mikhailovich Klimachev, Andrey Yurievich Kozlov, Darya Ivanovna Kormashova^{*}, Andrey Alexandrovich Kotkov, Yury Alekseevich Mityagin, Sergey Alexandrovich Savinov, Adilya Maratovna Sagitova, Dmitry Vasilievich Sinitsyn, and Maxim Vladimirovich Ionin P. N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991, Russia

*Corresponding author: kormashova4darjya@inbox.ru Received April 9, 2022 | Accepted September 2, 2022 | Posted Online October 8, 2022

Terahertz (THz) NH₃ lasing with optical pumping by electron-beam-sustained discharge "long" (\sim 100 µs) CO₂ laser pulses was obtained. The NH₃ laser emission pulses and the "long" pulses of the CO₂ pump laser were simultaneously measured with nanosecond response time. The NH₃ lasing duration and its delay with respect to the pump pulse were measured for various CO₂ laser pulse energies. For the CO₂ laser pump line 9R(30), three wavelengths of 67.2, 83.8, and 88.9 µm were recorded. For the CO₂ laser pump line 9R(16), only a single NH₃ laser line with a wavelength of 90.4 µm was detected.

Keywords: NH_3 laser; CO_2 laser; terahertz emission; nanosecond response time. **DOI:** 10.3788/COL202321.023701

1. Introduction

Currently, terahertz (THz) radiation is already actively used in industry^[1], medicine^[2], the study of cultural heritage sites^[3], and other fields. But, for solving some special problems (for example, plasma diagnostics^[4], remote detection of explosives behind obstacles^[5]), it is of interest to develop high-power sources of laser radiation with a special spectral composition in the THz range. One of the most spectroscopically studied gas lasers of this type is a NH₃ laser. THz emission on NH₃ transitions can be obtained by optical pumping by a CO₂ laser, which is an efficient and technically well-developed method. The first studies, to the best of our knowledge, with the THz NH₃ laser were aimed at studying its spectral capabilities. Therefore, a high-power pulsed transversely excited atmosphere (TEA) CO₂ laser for optical pumping and an optical cell with THz cavities of very low output ratio, with input and output radiation through millimeter holes, were used (see, for example, Refs. [6,7]). This made it possible to obtain lasing on dozens of transitions in the wavelength range from ~ 20 to $\sim 388 \,\mu\text{m}$. Later studies added new laser lines to the set, the total number of which approaches 100^[8]. In particular, it was found that for the CO_2 laser pump line 9R(16), the NH₃ laser can produce emission on up to 10 wavelengths of the THz range, for the 9R(30) pump line, more than 10 wavelengths, and using other pump lines led to 2-4 NH₃ laser lines.

Several research groups studied in detail NH₃ lasing with a wavelength of ~152 μ m for the CO₂ laser pump line 10P(32) and ~90 μ m for the 9R(16) pump line^[9-12]. Such an interest

in these wavelengths of the THz NH₃ laser is apparently associated, firstly, with the high efficiency of emission conversion (1.6% for ~152 μ m^[10] and 1.7% for ~90 μ m^[9]), and, secondly, with the prospect of using such THz emission for plasma diagnostics in electrodynamic accelerators and tokamaks with a strong magnetic field^[13]. Therefore, for these wavelengths, in contrast to others, the shape of a THz laser pulse was studied in comparison with a pump pulse. In Ref. [10], the shape of a single-line pulse with a wavelength of ~152 µm was the same as for a CO₂ laser pulse of ~300 ns duration. At the same time, a lasing pulse with a wavelength of ~90 µm started only after the first, most powerful peak of the pump pulse and replicated the shape of a low-energy "tail" of a CO₂ laser pulse^[12].

In Ref. [11], laser cavity *Q*-switching was implemented for THz radiation. Peak power at a wavelength of 152 μ m approached 10 kW at the pulse duration of ~5 ns. The authors studied optimal *Q*-switching time relative to a CO₂ laser pulse starting point, which, as the author noted, had an "amazing" delay of 1.5–2.0 μ s, i.e., an order of magnitude longer than the pump pulse duration itself.

Two research groups were engaged in solving the problem of obtaining high power in the atmospheric transparency window near a wavelength of ~2 mm^[14,15] with optical pumping by the 10R(14) TEA CO₂ laser line. Along with the emission on the ~2 mm line, there was more powerful emission at wavelengths of 257 and 281 µm. It was shown^[14] that CO₂ laser pulses with a duration up to ~1 µs are necessary for optimal lasing on the 2143 µm line, which started approximately 400 ns after the pump pulse beginning and continued until its end. In

Chinese Optics Letters

Ref. [15], output energy at the obtained wavelengths for a pump pulse with energy of 4 J was measured: 7 mJ at 257 μ m, 2 mJ at 281 μ m, and 0.4 mJ at 2143 μ m. The energy efficiency for the 2143 μ m line and for the 257 μ m line was ~0.01% and 0.2%, respectively. However, the authors did not study the temporal shape of the laser pulse with a wavelength of 281 μ m belonging to the same laser cascade as a pulse with a 2143 μ m wavelength.

Thus, it was demonstrated that an optically pumped NH_3 laser can operate on a large number of THz lines with relatively high efficiency, including lines suitable for plasma diagnostics. However, it should be noted that up to now the cascade mechanism of THz NH_3 laser operation optically pumped by a CO_2 laser has not been studied in detail. THz NH_3 laser pulse temporal shapes were mainly detected under experimental conditions, when lasing took place at a single wavelength^[9–12], or the pulse shape was only studied for a single one out of a set of wavelengths^[14,15].

For plasma diagnostics, it is of great interest to apply a NH_3 laser operating at several wavelengths simultaneously, which makes it possible to abandon the optical scheme for combining laser beams of different lasers traditionally used in such experiments (see, for example, Ref. [4]). To arrange multifrequency THz lasing, it makes sense to study characteristics of the NH_3 laser pumped by CO_2 laser pulses with a duration that is orders of magnitude longer than the NH_3 molecule vibrational relaxation time (~0.1 µs^[13]), i.e., an implementation of quasi-CW optical pumping.

The objective of our research was just the implementation of such an optical pumping of a NH₃ laser by a "long" pulse CO₂ laser with pulse duration up to ~100 µs and studying their temporal characteristics with a nanosecond resolution under concurrent operation of CO₂ and NH₃ lasers. As a pump CO₂ laser, an electron-beam-sustained discharge (EBSD) CO₂ laser was applied. Due to the use of such CO₂ laser pulses, the probability of obtaining multifrequency THz lasing quite increases. First, due to intermode beats, they have a spiked structure with a high (~100 kW) peak power an order of magnitude close to the peak power of short pulses used in Refs. [6,7]. Second, in contrast to the above mentioned papers, they have a pump pulse energy that is 2–3 orders of magnitude higher due to the pulse duration.

2. Methods

We used an optical pumping scheme similar to that applied in Ref. [7]. The optical scheme of our experiment is shown in Fig. 1.

In our experiment, we applied an EBSD CO₂ laser with the gas mixture CO₂:N₂:He = 1:4:5 under gas pressure of 0.30 atm (1 atm = 1.013×10^5 Pa). Plane reflective mirror 1 was installed directly on the EBSD CO₂ laser chamber 2. Plane-parallel plate 3 made of BaF₂ was used as a Brewster window. The optical cavity of the CO₂ laser consisted of rear reflective mirror 1, plane-parallel ZnSe plate 4, and diffraction grating 6 (100 grooves/mm). Diffraction grating 6 provided CO₂ lasing at a specific vibrational–rotational transition. To increase the output energy, an

Fig. 1. Optical scheme of the experiment: 1, 5, CO₂ laser rear mirrors; 2, EBSD CO₂ laser chamber; 3, 7, 9, plane-parallel BaF₂ plates; 4, plane-parallel ZnSe plate; 6, diffraction grating; 8, 22, spherical mirrors; 10, photodetector; 11, power and energy meter; 12, 21, flat mirrors; 13, lens; 14, gas cell input window; 15, gas input channel; 16, output to pressure meter; 17, mirrors of THz cavity; 18, Mylar film; 19, parabolic mirror; 20, quartz plate; 23, detector of THz radiation.

additional rear reflective mirror 5 was used. According to our estimates, the radiation output ratio when using plane-parallel plate 4 was ~50%. Plane-parallel BaF₂ plates 7 and 9 split the CO₂ laser beam, directing part of it to power and energy meter 11 (OPHIR 3A-SH) and photodetector 10 (PEM-L-3, response time 0.5 ns). Spherical mirror 8 (radius of curvature 100 cm) was used for focusing the laser beam. The rest of the CO₂ laser beam (~94%) was directed by plane mirror 12 and focusing lens 13 (focal length 9 cm) into a gas cell with ammonia.

A gas cell 20 cm long was bounded by NaCl optical window 14 and 18 of 0.1 mm thickness made of Mylar. Inside the gas cell, two plane brass mirrors 17 located at a distance of 12 cm from each other had a central hole of 2 mm in diameter, through which the pump laser beam came into the cell, and THz emission was extracted. Gaseous ammonia came into the cell through port 15. Gas pressure was controlled through port 16 with a Busch capsule vacuum gauge (0–25 mbar).

The THz laser beam from the gas cell was directed into detector 23 (RS 0.4–4 T bolometer, manufactured by LLC SKONTEL, response time 1 ns) by parabolic mirror 19 (focal length 15 cm), flat mirror 21, and spherical mirror 22 (radius of curvature 50 cm). The CO_2 laser and NH_3 emissions in the mid-IR were cut off by crystalline quartz plate 20.

3. Experiment

Our experiments were carried out with the CO₂ laser operating on spectral lines, for which the largest number of NH₃ laser lines was obtained^[7,16], namely, 9R(30) ($\lambda \approx 9.22 \,\mu$ m) and 9R(16) ($\lambda \approx 9.29 \,\mu$ m) corresponding to [G - ν_2 ; sR(5, 0)] and [G - ν_2 ; aR(6, 0)] absorbing transitions of ammonia molecules. The duration of the pump pulses reached ~100 µs, and the energy of the pump pulses was up to ~1 J. The optimal gas pressure in the cell with ammonia for lines 9R(16) and 9R(30) was 8 mbar and 2 mbar, respectively. An increase or decrease of the pressure of NH₃ relative to the optimal value led to a decrease in the THz radiation energy. In optically pumped gas lasers, the lasing directly depends on the absorbed pump radiation. The emission on the 9R(16) CO₂ laser line is less absorbed by NH₃ molecules as compared to the emission on the 9R(30) line for two reasons. Firstly, due to different absorption lines of the $G \rightarrow \nu_2$ transition, the 9R(30) line emission is absorbed by NH_3 molecules from the sR(5, 0) level, while the 9R(16) line emission is absorbed from a higher aR(6, 0) level. Secondly, the 9R(30) line is 0.007 cm^{-1} off the absorption line center, and the 9R(16) line is $0.040 \text{ cm}^{-1} \text{ off}^{[16]}$. With an increase in pressure up to 2 mbar NH₃, the absorption of radiation on both these lines and, as a result, THz NH₃ lasing increases simply due to an increase in the number of absorbing (emitting) particles. However, with a subsequent increase in gas pressure, the broadening of the NH₃ absorption lines grows up. In the case of the 9R(30) line, this broadening reduces the absorption, and, in the case of the 9R(16) line, the broadening gives an additional factor to the absorption enhancement. Therefore, the optimal ammonia pressure for THz NH₃ lasing pumped by the 9R(16) line is 8 mbar. A subsequent increase in the NH₃ pressure reduces the NH₃ lasing due to the third factor-the increase in the rotational relaxation of the excited molecules.

There was a certain intermediate gas pressure (4.5 mbar), at which THz radiation was observed when pumped by both lines of the CO_2 laser.

Some examples of the NH₃ laser and CO₂ laser pulses are shown in Figs. 2 and 3 (ammonia pressure 4.5 mbar). The insets show initial sections of the pulses. The temporal shape of the CO₂ laser pulses is calibrated to the measured values of the pulse energy E_{pulse} . The time instant t = 0 corresponds to the beginning of the EBSD pump pulse, the duration of which is ~50 µs.

Fig. 2. Pulses of CO₂ laser (bottom) and NH₃ laser (top) pumped by the line 9R(16). $E_{\rm oulse}$ = 0.59 J.

Fig. 3. Pulses of CO₂ laser (bottom) and NH₃ laser (top) pumped by the line 9R(30). E_{pulse} = 0.91 J.

THz lasing was observed during the most powerful part of the CO_2 laser pulse, when the peak power exceeded ~15 kW for the 9R(16) pump line and ~25 kW for the 9R(30) pump line. Low-frequency power fluctuations (~0.5 MHz) in the CO_2 laser pulse were replicated in the temporal form of the NH₃ laser pulse (see inset to Fig. 2). At the same time, high-frequency power oscillations (~41 MHz) in a "long" CO_2 laser pulse associated with intermode beating^[17] were not always replicated in the temporal shape of the NH₃ laser pulse (they are absent in Fig. 2, but they are in Fig. 3). Apparently, this is due to differences in the capabilities of the measuring equipment: the IR detector had two times better response time (0.5 ns) and ~10 times better signal-to-noise ratio than the THz one.

It can be seen from Fig. 2 that the shape of the NH_3 laser pulse replicates the shape of the most powerful part of the pump pulse. However, in Fig. 3, we observe two pronounced maxima in the THz laser pulse at sufficiently stable CO_2 laser output power.

We assume that this is a manifestation of the cascade mechanism of NH_3 lasing explaining multifrequency lasing when the CO_2 laser operating on this particular line is used for pumping, which was observed, in particular, in Refs. [6,16]. This was confirmed by subsequent measurements of the NH_3 laser spectrum.

The instability of the THz pulse train is explained by the unstable pump CO_2 laser pulse train. Therefore, it is possible to analyze only both THz pulse time delays relative to the pump pulse and the NH₃ laser pulse duration.

Figure 4 demonstrates dependences of NH_3 lasing time delay relative to the pump pulse and the duration of NH_3 laser pulses on the CO_2 laser pulse energy for the pump lines 9R(16) and 9R(30).

It can be seen from Fig. 4 that at the same pump energies, the duration of NH_3 laser pulses is longer for the 9R(30) pump line

Fig. 4. Dependence of the NH₃ laser pulse duration τ_{pulse} and the delay time τ_{delay} on the CO₂ laser pulse energy for the pump lines 9R(16) and 9R(30).

than for the 9R(16) one. In both cases, the delay of the NH₃ lasing onset goes down, and the laser pulse duration goes up with the CO₂ laser pulse energy increase. The time delay of NH₃ lasing onset is ~0.3–2.5 μ s for the 9R(16) line and ~0.2–0.6 μ s for the 9R(30) line. The duration of the NH₃ laser pulse depending on the CO₂ laser pulse energy ranged from 10 to 25 μ s and from 25 to 40 μ s for the 9R(16) and the 9R(30) lines, respectively. The smaller delay in the onset of NH₃ lasing under pumping by the 9R(30) line as compared to the one by the 9R(16) line can be explained by the difference in the CO₂ laser radiation absorption. At the NH₃ pressure of 4.5 mbar, apparently, the absorption of the 9R(30) line is still stronger than the absorption of the 9R(16) line. Therefore, the threshold value of the NH₃ laser gain is reached faster when pumped by the 9R(30) line than when pumped by the 9R(16) line.

To measure the wavelength of THz output, a diffraction grating of 6 grooves/mm with a blaze angle of 12° was used. It was installed instead of flat mirror 21 (see Fig. 1). In this series of experiments, THz detector 23 instead of LLC SKONTEL pyroelectric detector of LLC INFRATEKH-P with a response time of ~1 ms was used. Based on the THz beam diameter (12.6 mm diameter on e^{-2} level), the spectral resolution was $\pm 1 \,\mu\text{m}$ in the region of 60 μm and $\pm 1.4 \,\mu\text{m}$ in the region of 100 μm . (The accuracy of the diffraction grating angle of rotation was 0.02°, which corresponded to an accuracy of 0.1 μm .) The spectrum of THz emission was measured, first of all, for the pump 9R(30) CO₂ laser line, because, in this case, we observed an unusual form of THz lasing (see Fig. 3). The resulting spectrum is shown in Fig. 5.

Three lines of THz emission from NH₃ were recorded with wavelengths of 67.2 ± 1.2 , 83.8 ± 1.3 , and $88.9 \pm 1.4 \,\mu$ m. The strongest of them was the line with a wavelength of 83.8 mm. Identification (ID) of the transitions was carried out according to the results in Ref. [6], the transitions ID is shown in Fig. 5 above the corresponding columns of the diagram. Under these experimental conditions, the main part of THz emission energy was obtained on the so-called "refilling" transition, i.e., transition between the levels of the NH₃ ground vibrational state. It arises due to the equalization of the populations' nonequilibrium caused by the pumping of NH₃ molecules by the CO₂ laser onto the first excited vibrational state ν_2 . It should be noted that the wavelengths fixed by us do not exclude lasing on other THz

Fig. 5. Spectrum of THz emission obtained for the pump CO_2 laser line 9R(30); ammonia pressure 2.5 mbar.

transitions. Firstly, the possibilities of detecting THz radiation can be limited by the spectral sensitivity of the used pyroelectric detector and the characteristics of the reflectivity of the used diffraction grating. Secondly, the spectrum of THz lasing strongly depends on NH₃ gas pressure in the gas cell. In particular, in our case, all other conditions being equal, an increase in the NH₃ pressure up to 5.0 mbar resulted in a twofold enhancement in the THz signal at 67.2 and 88.9 µm, while the emission on the 83.8 µm line disappeared. Therefore, in Fig. 3, we could observe the generation of at least two cascade-coupled lines of the first excited NH₃ vibrational state ν_2 at wavelengths

Fig. 6. Dependence of the NH₃ laser output with a wavelength of 90.4 μ m on the CO₂ laser pulse energy for the 9R(16) pump line at ammonia pressure of 10.0, 5.5, 3.0, and 2.0 mbar.

 $67.2 \ \mu m$ (the first half of the lasing pulse) and $88.9 \ \mu m$ (the second half of the lasing pulse).

For the 9R(16) CO₂ laser pump line, THz lasing was studied at ammonia pressures of 10.0, 5.5, 3.0, and 2.0 mbar. At each gas pressure, four possible lasing lines with wavelengths of 90.4 ± 1.4, 63.3 ± 1.1, 72.8 ± 1.2, and 67.2 ± 1.2 µm were tested; however, THz emission was detected only at the 90.4 µm line. The ID of transitions was carried out according to the results of Ref. [16]. The generated 90.4 µm line corresponds to transition ν_2 :s(7,0) \rightarrow a(6,0). The lines on which no THz radiation was detected, 63.3, 72.8, and 67.2 µm, correspond to the transitions G:a(8,0) \rightarrow s(7,0), G:s(7,0) \rightarrow a(6,0) ("refilling" transitions), and ν_2 :a(6,0) \rightarrow s(5,0), respectively. Figure 6 shows that the energy of NH₃ laser pulses at a wavelength of 90.4 µm increases with enhanced pressure and is maximal at 10 mbar. In all the cases, the output energy grew up with increasing pump energy.

More detailed conclusions about the cascade mechanism of THz NH_3 lasing can be made only in the case of studying the temporal shape with nanosecond resolution at each of the possible NH_3 laser wavelengths.

4. Conclusion

Thus, in this paper, THz NH₃ laser pulses and "long" ($\sim 100 \,\mu$ s) pump CO₂ laser pulses were measured simultaneously with nanosecond resolution. The time delay of the NH₃ lasing onset [$\sim 0.3-2.5 \,\mu$ s for the 9R(16) line and $\sim 0.2-0.6 \,\mu$ s for the 9R(30) line] went down, and the pulse duration went up with an increase in the CO₂ laser pulse energy. The duration of the NH₃ laser pulse, depending on the energy of the CO₂ laser pulse, ranged from 10 to 25 μ s and from 25 to 40 μ s for the 9R(16) and 9R(30) lines, respectively.

The wavelengths of THz radiation from the NH₃ laser were also measured. For the CO₂ laser pump line 9R(30), these wavelengths were 67.2, 83.8, and 88.9 μ m. The wavelength of the strongest line was 83.8 μ m. For the CO₂ laser pump line 9R(16), only the single 90.4 μ m spectral line was recorded.

References

- M. Naftaly, N. Vieweg, and A. Deninger, "Industrial applications of terahertz sensing: state of play," Sensors 19, 4203 (2019).
- E. P. J. Parrott, Y. Sun, and E. Pickwell-MacPherson, "Terahertz spectroscopy: its future role in medical diagnoses," J. Mol. Struct. 1006, 66 (2011).
- K. Fukunaga, "Terahertz applications in art conservation," in Handbook of Terahertz Technology for Imaging, Sensing and Communications (Woodhead, 2013), p. 615.
- 4. Z. Vereshchinski, V. G. Gerasimov, E. P. Gorbunov, A. Kasperchuk, M. Lesnewski, A. Y. Molchanov, M. Padukh, and K. Paprotski, "Two-wave multichannel laser submillimeter interferometer (TMLSI) for horizontal probing of the plasma in the T-15," Sov. J. Plasma Phys. 18, 106 (1992).
- J. F. Federici, D. Gary, R. Barat, and Z.-H. Michalopoulou, "Chapter 11– Detection of explosives by terahertz imaging," in *Counterterrorist Detection Techniques of Explosives* (Elsevier Science B.V., 2007), p. 323.
- K. Gullberg, B. Hartmann, and B. Kleman, "Submillimeter emission from optically pumped ¹⁴NH₃," Phys. Scr. 8, 177 (1973).
- Y. Nishi, Y. Horiuchi, S. Wada, N. Sokabe, and A. Murai, "New laser emission from NH₃ optically-pumped by TE-CO₂ laser," Jpn. J. Appl. Phys 21, 719 (1982).
- S. Marchetti and R. Simili, "New FIR emissions in ammonia by pumping with a line narrowed high pressure CO₂ laser," Int. J. Infrared Millim. Waves 20, 2083 (1999).
- H. Hirose and S. Kon, "Compact, high power FIR NH₃ laser pumped in a three mirror CO₂ laser cavity," Int. J. Infrared Millim. Waves 5, 1571 (1984).
- H. Hirose and S. Kon, "Compact, high-power FIR NH₃ laser pumped in a CO₂ laser cavity," IEEE J. Quantum Electron. 22, 1600 (1986).
- T. E. Wilson, "A high-power far-infrared NH₃ laser pumped in a three-mirror CO₂ laser cavity with optically-switched cavity-dumping," Int. J. Infrared Millim. Waves 14, 303 (1993).
- Z. Jiu, D. Zuo, L. Miao, and Z. H. Cheng, "An efficient high-energy pulsed NH₃ terahertz laser," Int. J. Infrared Millim. Waves 31, 1422 (2010).
- V. A. Mishchenko, Y. V. Petrushevich, D. N. Sobolenko, and A. N. Starostin, "High-power terahertz optically pumped NH₃ laser for plasma diagnostics," Plasma Phys. Rep. 38, 460 (2012).
- P. Woskoboinikow, J. Machuzak, and W. Mulligan, "A high-power 140 GHz ammonia laser," IEEE J. Quantum Electron. 21, 14 (1985).
- S. Marchetti, M. Martinelli, R. Simili, R. Fantoni, and M. Giorgi, "Efficient millimetre far infrared laser emissions in different molecular systems," Infrared Phys. Technol. 41, 197 (2000).
- T. Yoshida, N. Yamabayashi, K. Miyazaki, and K. Fujisawa, "Infrared and farinfrared laser emissions from a TE CO₂ laser pumped NH₃ gas," Opt. Commun. 26, 410 (1978).
- 17. C. Beairsto, R. Walter, A. A. Ionin, A. A. Kotkov, R. Penny, L. A. Seleznev, and S. Squires, "Control of laser radiation parameters: high-frequency temporal structure of laser and phase-conjugated signals in intracavity degenerate four-wave mixing of radiation from electron-beam-controlled discharge CO₂ and CO lasers in their active media," Quantum Electron. 27, 614 (1997).